
Replica Management in the Data Grid

Ann Chervenak and Chuck Salisbury

February 25, 2000

1 Introduction

The Computational Grid is an emerging infrastructure that combines massive storage systems, high-
performance and parallel networks, high-performance microprocessors, parallel computers, communi-
cation protocols, distributed system software, and security mechanisms. The Grid allows applications
to share computing resources and data sets that are distributed over the wide area.

The Data Grid focuses on the management of storage resources and large datasets in a Grid
environment. In an increasing number of scienti�c disciplines such as global climate change studies,
high energy physics, and computational genomics, large data collections are emerging as important
community resources. These volume of these data collections is already measured in terabytes and
will soon total petabytes. Components of the Globus Data Grid infrastructure include:

� Standard interfaces to a wide variety of storage systems and devices

� A service for maintaining metadata, or attributes that describe particular �les, collections of
�les, and storage systems. Users can query datasets based on their attributes.

� A service for creating and managing replicas of datasets

In this paper, we describe the replica management architecture of the Data Grid. This service is
responsible for managing complete and partial copies of data sets. Replica management is an increas-
ingly important issue for a number of scienti�c applications. For example, consider a data set that
contains one petabyte of experimental results for a particle physics application. While the complete
data set may exist in one or possibly several physical locations, it is likely that many universities,
research laboratories or individual researchers will have insu�cient storage to hold a complete copy.
Instead, they will store copies of the most relevant portions of the data set on local storage for faster
access.

Services provided by a replica management system include:

� creating new copies of a complete or partial data set

� registering these new copies in a Replica Catalog

� allowing users and applications to query the catalog to �nd all existing copies of a particular �le
or data set

� selecting the \best" replica for access based on storage and network performance predictions
provided by a Grid information service

1

A fundamental component of the replica management architecture is the Replica Catalog, which
provides mappings between logical names for �les and collections and the storage system locations of
one or more replicas of these objects.

Note that the Replica Catalog should not contain any semantic information that describes the
contents of data �les and collections. Semantic information includes objects and attributes related to
the contents and structure of data sets. Such information should be stored in a separate Metadata

Catalog. Several scienti�c disciplines such as climate modeling, particle physics, and neurobiology have
well-de�ned Metadata Catalogs. (Add references.) Users or applications can query these Metadata
Catalogs to identify �les and collections with desired attributes. The Metadata Catalog produces a
list of names for the requested �les and collections; depending on the catalog, these names may be
direct pointers into the Replica Catalog, or a conversion step may be necessary before consulting the
Replica Catalog to determine the physical locations of the chosen �les.

In the remainder of this paper, we present details of the design of the Replica Catalog architec-
ture. We illustrate the architecture with an example implementation using LDAP, the Lightweight
Distributed Access Protocol. Finally, we discuss potential extensions to the design of the replica
management service.

2 The Replica Catalog Architecture

As mentioned above, the purpose of the Replica Catalog is to provide mappings between logical names
for �les or collections and one or more copies of the objects on physical storage systems.

The Replica Catalog architecture consists of a minimal set of objects that characterize logical �les
and logical collections as well as provide mapping information between logical names and physical
storage locations. These objects include: replica catalog, logical collection, logical �le, and replica.
This set of objects may eventually be expanded.

In the discussion below, we describe the hierarchy of objects in the Replica Catalog. We present
an example catalog implementation for portions of a climate modeling data set, shown in Figure 1.
This example Replica Catalog is implemented as an LDAP directory.

2.1 The Replica Catalog Object

At the top level of the object hierarchy shown in Figure 1 is the replicaCatalog object. A Replica
Catalog contains mappings between names of logical collections and logical �les and physical locations
of one ore more copies of �les.

Although Figure 1 shows a single replicaCatalog object, a data grid may (and indeed typically
will) contain multiple replica catalogs. For example, researchers in di�erent scienti�c disciplines might
maintain separate replica catalogs to manage relevant data sets. It is possible to create hierarchies
of replica catalogs to impose a directory-like structure on related logical collections. In addition, the
replica manager can perform access control on an entire replica catalog as well as on individual logical
�les.

Next, we present an object de�nition for a particular implementation of the replicaCatalog object
in an LDAP directory within the Globus grid computing environment. This simple object contains an
attribute that allows the creator of a catalog to describe it:

GlobusReplicaCatalog ObjectClass
SUBCLASS OF GlobusTop
SUBCLASS OF GlobusGroup
RDN = rc (replicaCatalog)

2

 accessRights:

 catalogEntryTime:

 creator:
 accessRights:

 catalogEntryTime:

 creator:

filename: file2

filename: file3

filename: file4

filename: file5

filename: file7

filename: file6

logicalCollection=climate1

filename: file1

filename: file3

filename: file4

filename: file5

replicaCreateTime: Fri Feb 25 16:33:01 PST 2000

replicaCompleteTime: Fri Feb 25 17:25:42 PST 2000

protocolAndPort: gsiftp

protocolAndPort: file

hostname: jupiter.isi.edu

storageDN: ss=jupiter.isi.edu, ou=Information Sciences

 Institute, o=University of Southern California,

 o=Globus, c=US

filename: file2

filename: file3

filename: file4

filename: file5

filename: file6

filename: file7

filename: file1

protocolAndPort: gsiftp

protocolAndPort: file

replicaCreateTime: Mon Jan 24 10:28:51 PST 2000

replicaCompleteTime: Mon Jan 24 13:46:17 PST 2000

hostname: yukon.mcs.anl.gov

storageDN: ss=yukon.mcs.anl.gov, ou=Mathematics

 and Computer Science Division, o=Argonne

 National Laboratory, o=Globus, c=US

replicaCatalog=Climate Catalog

logicalFile=file1 logicalFile=file7

URLConstructor; $protocol://$hostname:$port/

replica: jupiter.isi.edu

URLConstructor; $protocol://$hostname:$port/

 pub/ngi/uvcloud/$filename

replica: yukon.mcs.anl.gov

climate/uvcloud/$filename

logicalCollection=climate2 logicalCollection=climate3

Figure 1: Shows the Replica Catalog architecture.

3

CHILD OF f

g
MAY CONTAIN f

description :: cis, # description of catalog
g

2.1.1 The Logical Collection Object

At the top level of the replica catalog are one or more logicalCollection objects. A logical collection
object groups together logical �les for the purpose of managing replication more e�ciently. Typically, a
research community or an application would group together logically-related �les and register them as
a collection in the replica catalog. The catalog is not concerned with the contents of �les or collections.
It is only concerned with how the �les in the collection are replicated on di�erent storage systems, as
explained in the replica object description below.

We require that all logical �les registered in the Replica Catalog belong to a single logical collection
object.

The implementation of a logicalCollection object in an LDAP directory in the Globus environment
is shown below. The logicalCollection object must contain a complete list of the names of all logical
�les in the collection. Thus, one operation on the replica catalog is to return the names of all
logical �les associated with a logical collection.

The logicalCollection object also contains optional attributes for describing the logical collection,
including information about the creator, creation time and access rights for the catalog.

GlobusReplicaLogicalCollection ObjectClass
SUBCLASS OF GlobusTop
RDN = lc (logicalCollection)
CHILD OF f

GlobusReplicaCatalog
g
MUST CONTAIN f

�lename :: cis, # name of logical �le in collection
g

MAY CONTAIN f
description :: cis, # description of logical collection
creator :: cis, # of logical collection
accessRights :: cis, # for accessing logical collection
catalogEntryTime :: cis, # of logical �le collection

g

2.1.2 The Logical File Object

Logical �les are entities with globally unique names that may have one or more physical instances.
For each logical �le in a collection, there is exactly one logicaFile object in the replica catalog. Given
this structure, an LDAP implementation of the replica catalog supports queries that return the full
distinguished name (DN) of all logical �les in a speci�ed logical collection.

4

The logicalFile object in a Globus LDAP implementation of a Replica Catalog is shown below.
The object contains optional attributes describing the logical �le, including the creator of the entry
in the replica catalog, time of entry and access rights.

GlobusReplicaLogicalFile ObjectClass
SUBCLASS OF GlobusTop
RDN = rf (replicaLogicalFile)
CHILD OF f

GlobusReplicaCatalog
g
MAY CONTAIN f

description :: cis, # description of logical �le
creator :: cis, # of logical �le
accessRights :: cis, # for accessing logical �le
catalogEntryTime :: cis, # of logical �le object

g

2.2 The Replica Object

Beneath the logical collection object are one or more replica objects. The replica object contains the
information required to map logical names for �les and collections to physical storage locations or
URLs.

The replica object provides information about a complete or partial copy of a logical collection.
The replica object explicitly lists all �les from the logicalCollection object that are contained in the
replica; so, the replica object can specify either partial or complete collections. Note that all logical
�les in a replica are stored on the same physical storage system. A logicalCollection object may have
an arbitrary number of replicas, each of which contains a (possibly overlapping) subset of the �les in
the collection. Using replica objects, we can easily implement logical collections that span multiple
physical storage systems.

In the example shown in Figure 1, the logicalCollection called climate1 has two replicas: a partial
collection that contains �le3, �le4 and �le5 on the storage system jupiter.isi.edu, and a complete
collection on the storage system yukon.mcs.anl.gov.

The replica catalog supports a number of operations using the replica object:

� use hostname, protocol, port and �lename attributes to construct a URL for the
desired logical �le using the grammar speci�ed in the URLconstructor attribute

� �nd all replicas of a speci�ed logical �le by searching the �lename attributes of

replica objects

� using Grid information systems, estimate data transfer performance for each replica
of a desired �le or collection; select the replica with the best predicted performance

An example replica object in our LDAP implementation has the following attributes:

GlobusReplicaInfo ObjectClass
SUBCLASS OF GlobusTop
RDN = re (replica)
CHILD OF f

5

GlobusReplicaLogicalFile
g
MUST CONTAIN f

URLConstructor :: cis, # used to contstruct
URLs of �les

completeTime :: cis, # complete time/pending
�lename :: cis, # name of logical �le

g

MAY CONTAIN f
storageDN :: dn, # DN of storage system

where �les are stored
createTime :: cis, # start time of replica creation
creator :: cis, # creator of replica
originalURL :: cis, # URL of originating

�le instance
logstreamDN :: dn, # DN of entry in log �le
protocolAndPort :: cis, # access protocol and

port for storage system
hostname :: cis, # hostname of storage system

g

Each replica of a collection must explicitly name all the logical �les in that partial replica, using
the �lename attribute.

The URLConstructor attribute speci�es a grammar that the replica catalog uses to generate a
complete URL, which is required by Globus to read or write individual �les. Typically, the URLcon-
structor speci�es a format for generating a URL by combining the protocol speci�cation, hostname
and port number of the storage device (available from the storageSystem object), the string speci�ed
by the URLconstructor, and the name of the �le on the target storage system.

The replica object contains an optional attribute called storageDN which contains a pointer to a
StorageSystem object; when used in a Globus environment, the StorageSystem object resides in the
Grid information service, called MDS, and characterizes the system where the �le is stored, including
access protocols, system performance and con�guration.

The replica object also contains optional attributes. The object can explicitly specify the access
protocol for accessing the storage system and the storage system's hostname and port number. (If
port number is not speci�ed, the default port number for the chosen protocol is assumed.) If the
Replica Catalog is part of a Globus grid environment, then these attributes can be found in the MDS
information service. However, we include them as optional attributes of the replica object to allow
the Replica Catalog to be used independently of Globus and MDS.

Additional attributes of the replica object include times indicating when a replica creation was
initiated and completed; the name of the replica's creator; the URL from which the replica was copied;
and a pointer into a log �le that records replica operations. Of these attributes, only completeTime
is required.

3 Potential Extensions

We have described a set of objects to implement replica management. The basic capabilities outlined
so far could be extended in several ways. In this section, we discuss some of the potential extensions to

6

the catalog architecture. We welcome comments from the user community regarding the desirability
of these extensions.

3.1 Views

The proposed design provides an information location service using a catalog structure that is the
same for all users. Access to entries in the catalog can be controlled using LDAP facilities. However,
one possible requirement is to increase the amount of local control, providing local or even personal
views of the distribution of data.

A personal view could allow a user to record the locations of a set of �les being used repeatedly.
This would avoid the need to query the metadata catalog for logical collection and �le names, search
the replica catalog for the corresponding locations, and then select from among the locations. The
personal view could associate a logical name with a set of �le instance URLs. This would also provide
users with the ability to easily locate data that has been placed in di�erent logical collections. Each
user's set of personal views could be independent of the views of other users.

A structure that provides local views might be used in an environment providing increased local
control over data access. In addition to the global catalog, site catalogs could be used to record the
location of data available to users at a particular site, but not generally accessible outside the site.
Maintenance and control of the catalog would be site responsibilities. The local replica catalog would
contain links to replica catalogs at sites which share data, as well as to any replica catalogs which are
globally known. Providing this local control would probably come at the cost of increased complexity
for locating data not recorded in the site catalog.

3.2 Mapping �le names to sub-directories

The proposed design implicitly assumes that all �les in a collection will be stored in a single directory.
Speci�cally, the URL constructor contained in a replica object provides a single path and a simple
language for mapping a logical �le name into the name of the �le instance. It might be the case
that a system administrator would place a single collection with a large number of �les into di�erent
subdirectories to ease storage management. When a logical collection is physically stored on multiple
directories, there must be some mechanism for determining the correct sub-directory for each logical
�le.

One approach would be to extend the mapping language to associate a logical �le name with path
information as well as a �le instance name. The requirements for such a mapping language have not
been de�ned, but would probably be based on the logic used by system administrators to distribute
the �les across several subdirectories.

3.3 Attribute Extensibility

It can be di�cult to determine which descriptive information belongs in a metadata catalog, and
which in the replica catalog. Our design places in the replica catalog only that information associated
with mapping logical �le and collection names to physical storage locations. However, additional
information may be desirable.

Stated in more general terms, the data grid architecture does not de�ne the semantics of replicas.
In our catalog architecture, a replica is a user-asserted correspondence between two physical �les.
Replicas speci�ed in the catalog may be byte-for-byte copies of one another, but this is not required
by the Replica Manager. It may be desirable to allow users to place in the replica catalog attributes
that de�ne the semantics of replicas.

7

As an example, consider data that is stored in big endian and little endian formats at di�erent
locations. In a grid environment, a user may have access to both types of machines and want to
determine all locations of the data prior to selecting both a data source and a compute location.
Another example is data that may be stored in one �le by temporal coordinates and in another by
spatial coordinates. While the �les contain the same information, an application's performance may
di�er for the two �les. In both of these examples, it may be desirable to allow the users to place
additional attributes in the replica catalog to assert that �les are replicas.

4 Summary

Replica management is an increasingly important function for managing individual �les and collections
of �les for scienti�c communities.

We have presented an overview of the architecture for replica management in the Data Grid. One
important component of this architecture is the Replica Catalog, which provides mappings between
logical names of �les and collections and the physical locations where these objects are stored. The
replica catalog architecture consists of four objects: replica catalogs, logical collections, logical �les
and replicas. Using these simple objects, we are able to provide many essential replica management
services. The catalog allows users and applications to register logical �les and collections in the replica
catalog, as well as registering any number of replicas of subsets of a speci�ed logical collection. In
addition, we can perform a number of important queries on the replica catalog, including:

� �nd all logical �le names associated with a logical collection

� �nd all distinguished names of logical �les in a collection

� �nd all replicas of a logical �le or collection

� construct a URL for a replica of a logical �le or collection

Finally, in association with a Grid computing information service, we can estimate the performance
of various replicas and choose the best replica for a given data transfer.

We have also discussed a set of possible extensions to our replica catalog, including allowing
arbitrary views of replicas; mapping �lenames to more complex hierarchies of directories; and extending
attributes associated with replicas to allow users more control over the de�nition and selection of
replicas.

We welcome comments on our proposed Replica Catalog architecture and possible extensions.
Please send email to annc@isi.edu and salisbur@mcs.anl.gov.

8

